LECTURE NO 28

Magnetostatics

Topics

inductors and inductances, magnetic energy

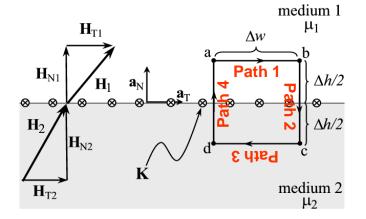
Will use Ampere's circuital law and Gauss's law to derive normal and tangential boundary conditions for magnetostatics.

Ampere's circuit law:

$$\int \mathbf{H} \mathbf{L} d\mathbf{L} = I_{end}$$

The current enclosed by the path is

$$I_{enc} = \int K dW = K \Delta w.$$



We can break up the circulation of **H** into four integrals:

$$\int \mathbf{H} \, \mathbf{d} \mathbf{L} = \int_{a}^{b} + \int_{c}^{c} + \int_{d}^{a} + \int_{a}^{a} (\mathbf{H} \, \mathbf{d} \mathbf{L}) = K \Delta w.$$

$$\text{Path 1:} \quad \int_{a}^{b} \mathbf{H} \, \mathbf{d} \mathbf{L} = \int_{0}^{\Delta w} H_{\mathrm{TI}} \mathbf{a}_{\mathrm{T}} \, \mathbf{d} L \mathbf{a}_{\mathrm{T}} = H_{\mathrm{TI}} \Delta w.$$

$$\text{Path 2:} \quad \int_{b}^{c} \mathbf{H} \, \mathbf{d} \mathbf{L} = \int_{\Delta h/2}^{0} H_{\mathrm{NI}} \mathbf{a}_{\mathrm{N}} \, \mathbf{d} L \mathbf{a}_{\mathrm{N}} + \int_{0}^{-\Delta h/2} H_{\mathrm{N2}} \mathbf{a}_{\mathrm{N}} \, \mathbf{d} L \mathbf{a}_{\mathrm{N}} = -(H_{\mathrm{N1}} + H_{\mathrm{N2}}) \frac{\Delta h}{2}$$

Path 3:
$$\int_{c}^{d} \mathbf{H} \Box d\mathbf{L} = \int_{\Delta w}^{0} H_{T2} \mathbf{a}_{T} \Box dL \mathbf{a}_{T} = -H_{T2} \Delta w.$$
Path 4:
$$\int_{d}^{a} \mathbf{H} \Box d\mathbf{L} = \int_{-\Delta h/2}^{0} H_{N2} \mathbf{a}_{N} \Box dL \mathbf{a}_{N} + \int_{0}^{\Delta h/2} H_{N1} \mathbf{a}_{N} \Box dL \mathbf{a}_{N} = (H_{N1} + H_{N2}) \frac{\Delta h}{2}$$

Now combining our results (i.e., Path 1 + Path 2 + Path 3 + Path 4), we obtain

$$ACL: \begin{tabular}{l} \blacksquare \begin{tabular}{ll} \blacksquare \begin{tabular}{$$

A more general expression for the first magnetostatic boundary condition can be written as

$$\mathbf{a}_{21} \times \left(\mathbf{H}_{1} - \mathbf{H}_{2}\right) = \mathbf{K}$$

where \mathbf{a}_{21} is a unit vector normal going from media 2 to media 1.

Special Case: If the surface current density K = 0, we get

 $H_{T1} - H_{T2} = K$ $H_{T1} = H_{T2}$

The tangential magnetic field intensity is continuous across the boundary when the surface current density is zero.

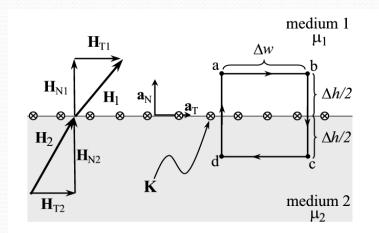
Important Note:

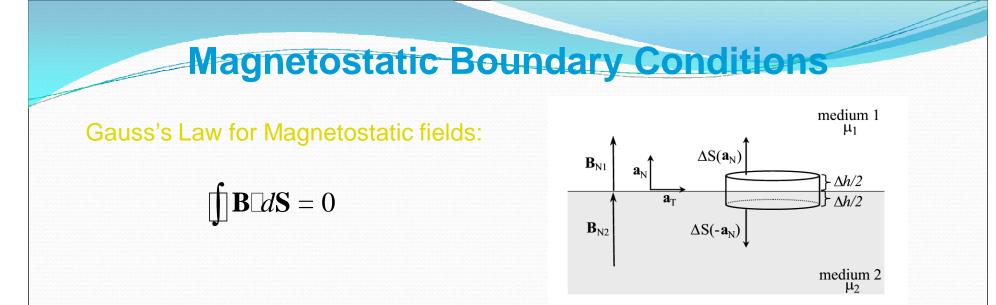
We know that
$$\mathbf{B} = \mu_o \mu_r \mathbf{H}$$
 (or) $\mathbf{H} = \frac{\mathbf{B}}{\mu_o \mu_r}$

Using the above relation, we obtain

Therefore, we can say that $B_{T1} \neq B_{T2}$

The tangential component of the magnetic flux density B is not continuous across the boundary.





To find the second boundary condition, we center a Gaussian pillbox across the interface as shown in Figure.

We can shrink Δh such that the flux out of the side of the pillbox is negligible. Then we have

 $\iint \mathbf{B} \Box d\mathbf{S} = \int B_{\mathrm{N1}} \mathbf{a}_{\mathrm{N}} \Box dS \mathbf{a}_{\mathrm{N}} + \int B_{\mathrm{N2}} \mathbf{a}_{\mathrm{N}} \Box dS (-\mathbf{a}_{\mathrm{N}})$ $= \left(B_{\mathrm{N1}} - B_{\mathrm{N2}} \right) \Delta S = 0.$

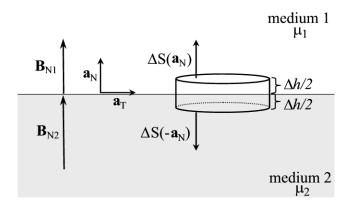
Normal BC:

$$B_{\rm N1} = B_{\rm N2}$$

Normal BC:

$$B_{\rm N1} = B_{\rm N2}$$

Thus, we see that the normal component of the magnetic flux density must be continuous across the boundary.



Important Note:

We know that $\mathbf{B} = \mu_o \mu_r \mathbf{H}$

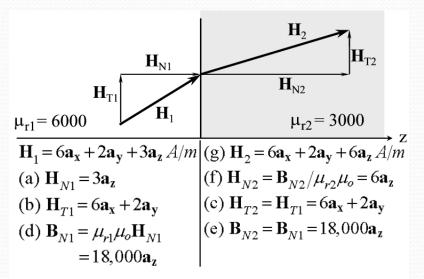
Using the above relation, we obtain

$$B_{\rm N1} = B_{\rm N2}$$
 $\mu_o \mu_1 H_{\rm N1} = \mu_o \mu_2 H_{\rm N2}$

Therefore, we can say that $H_{N1} \neq H_{N2}$

The normal component of the magnetic field intensity is not continuous across the boundary (but the magnetic flux density is continuous).

Example 3.11: The magnetic field intensity is given as $\mathbf{H}_1 = 6\mathbf{a}_x + 2\mathbf{a}_y + 3\mathbf{a}_z$ (A/m) in a medium with $\mu_{r1} = 6000$ that exists for z < 0. We want to find \mathbf{H}_2 in a medium with $\mu_{r2} = 3000$ for z > 0.



Step (a) and (b): The first step is to break H_1 into its normal component (a) and its tangential component (b).

Step (c): With no current at the interface, the tangential component is the same on both sides of the boundary.

Step (d): Next, we find \mathbf{B}_{N1} by multiplying \mathbf{H}_{N1} by the permeability in medium 1. **Step (e):** This normal component **B** is the same on both sides of the boundary. **Step (f):** Then we can find \mathbf{H}_{N2} by dividing \mathbf{B}_{N2} by the permeability of medium 2. **Step (g):** The last step is to sum the fields .